Browsing by Author "Hassaine, Slimane"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Contribution to the geometry of the besicovith- Orlicz space of almost periodic functions(Universite Mouloud MAMMERI Tizi-Ouzou, 2021) Hassaine, SlimaneIn this thesis we are interested in the geometry of Banach spaces. In particular, the one of the Besicovitch-Orliczspaces of almost periodic functions a.p. a.p is the closure of the set of generalized trigonometric polynomials relative to the Luxemburg norm and Φis a convex function with properties similar to those of the power function. Some geometric properties of these spaces, such as uniform and strict convexity, uniform non-squareness, β-propertyhave been already studied. Our main objective is to characterize the extreme points of the unit ball of a.p for the bothnorms: the Luxemburg norm, and the Orlicznorm (equal to the Amemiya norm). The results obtained depend closely on the strict convexity and the structural affine intervals of the functionΦ. Thanks to these results, were found the sufficient conditions for the strict convexity of a.p in the case of the Luxemburg norm. Furthermore, some properties of the set of points where the infimum is atteined in Amemya norm are also obtained.Item Contribution to the geometry of the besicovith- Orlicz space of almost periodic functions(Universite Mouloud MAMMERI Tizi-Ouzou, 2021) Hassaine, SlimaneDans cette thèse, on s'intéresse à la géométrie des espaces de Banach. En particulier, celle des espaces de Besicovitch-Orlicz de fonctions presque périodiques p.p. p.p est la fermeture de l'ensemble des polynômes trigonométriques généralisés par rapport à la norme de Luxemburg et Φest une fonction convexe ayant des propriétés similaires à celles de la fonction puissance. Certaines propriétés géométriques de ces espaces, telles que la stricte et l'uniforme convexité, l'uniforme non-squareness, la propriété (β), ont été déjà étudiées. Notre objectif principal est de caractériser les points extrêmes de la boule unité de p.ppour la norme de Luxemburg et celle d’Orlicz(égale à la norme d’Amemya). Les résultats obtenus dépendent de la stricte convexité et des intervalles de structure affine de Φ.Grâce à ces résultats, nous avons retrouvé les conditions suffisantes pour la stricte convexité de p.p dans le cas de la norme de Luxemburg. Certaines propriétés de l'ensemble des points où l'infimum est atteint pour la norme d'Amemiya sont aussi obtenues.Item Contribution to the geometry of the besicovith- Orlicz space of almost periodic functions(Universite Mouloud MAMMERI Tizi-Ouzou, 2021) Hassaine, SlimaneCe travail est consacré à la conception d’observateurs pour une classe de systèmes non linéaires Lipschitziens. Les contributions de cette thèse se décomposent en trois parties : La première partie, présente une méthode de conception d’observateurs utilisant la méthodologie du grand-gain améliorée combinée avec la technique de conception d’observateurs basée sur les LMIs pour concevoir un observateur plus général permettant d’exploiter les avantages des deux approches. Un exemple numérique est donné pour montrer l’efficacité de l’observateur proposé avec différentes valeurs de la constante de Lipschitz qui caractérise la non-linéarité du système. La deuxième partie est consacré à l’analyse de la faisabilité des conditions LMIs dans le cadre de la conception d’observateurs pour une classe de systèmes non linéeaires. En utilisant certaines décompositions matricielles mathématiques, des conditions LMIs générales assurant la convergence exponentielle de l’erreur d’estimation sont fournies. GrÃ?ce à des transformations linéaires et/ou non linéaires, ces LMIs sont améliorées du point de vue faisabilité. Enfin, pour une classe particulière de systèmes, il est démontré que les LMIs proposées sont toujours faisables, ce qui surmonte les faiblesses des approches basées LMIs liées à l’existence de solutions qui permettent la synthèse d’un observateur.Item Fonctions presque-automorphes. Application aux équations différentielles(UMMTO, 2015) Hassaine, Slimane